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Modeling film flows down inclined planes

C. Ruyer-Quila and P. Mannevilleb
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Abstract. A new model of film flow down an inclined plane is derived by a method combining results of
the classical long wavelength expansion to a weighted-residuals technique. It can be expressed as a set of
three coupled evolution equations for three slowly varying fields, the thickness h, the flow-rate q, and a new
variable τ that measures the departure of the wall shear from the shear predicted by a parabolic velocity
profile. Results of a preliminary study are in good agreement with theoretical asymptotic properties close
to the instability threshold, laboratory experiments beyond threshold and numerical simulations of the full
Navier–Stokes equations.

PACS. 47.20M Interfacial instability – 47.20K Nonlinearity

1 Introduction

In addition to being involved in a wide variety of techni-
cal applications (chemical reactors, evaporators, etc.), the
dynamics of fluid films is an interesting topic in itself. As
a matter of fact, thin films flowing down inclined surfaces
exhibit a rich phenomenology [1] and offer a good testing
ground for the study of the transition to turbulence. Insta-
bilities take place at low flow rates, which gives a unique
opportunity to analyze the development of waves at the
surface of the fluid into large-amplitude strongly nonlin-
ear localized structures such as solitary pulses and fur-
ther to study their disorganization into developed spatio-
temporal chaos via secondary instabilities.

A trivial solution to the flow equations is easily found
in the form of a steady uniform parallel flow with parabolic
velocity profile, often called Nusselt’s solution, where the
work done by gravity is exactly consumed by viscous
dissipation. Thin films at low flow rate over sufficiently
steep surfaces turn out to be unstable against long wave-
length infinitesimal perturbations, i.e. wavelength large
when compared to the thickness of the flow. This is con-
firmed by a general study of the relevant Orr–Sommerfeld
equation which shows that short-wavelength shear insta-
bilities of the Tollmien–Schlichting type are only relevant
for flows over planes at vanishingly small inclination an-
gles and very high flow rates [2].

In the following we will thus be concerned with long
wavelength interfacial instability modes, the dynamics
of which is essentially controlled by viscosity and sur-
face tension effects. Close to the threshold these waves
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present themselves as stream-wise surface undulations
free of span-wise modulations (“two-dimensional” waves)
emerging from a supercritical (i.e., continuous) bifurca-
tion. Farther from threshold, they saturate at finite ampli-
tudes and, depending on control parameters, may develop
secondary instabilities involving span-wise modulations
(“three-dimensional” instabilities) [3] or first evolve into
localized “solitary” structures that subsequently desta-
bilize [4]. For the moment we will focus on the two-
dimensional case where the hydrodynamic fields depend
only on the cross-stream and stream-wise coordinates,
y and x respectively (see Fig. 1), leaving the three-
dimensional problem for future study.

It turns out that, for the regimes we are interested
in, the height of the waves remains small when compared
to their wavelength. This motivates a long standing prac-
tice [5,6] of studying them by means of asymptotic ex-
pansions in powers of a small parameter ε, usually called
the film parameter. Starting from this long-wave expan-
sion, a certain number of models have then been derived
since the pioneering work of Kapitza [7], e.g. [8–10] for
the most recent ones, see the review by Demekhin et al.
[11] for earlier attempts. The simplest useful result ob-
tained in this way is a partial differential equation called
Benney’s equation [12] to be written explicitly later (36).
Governing the local thickness of the film h(x, t) in terms
of its space-time derivatives, it will be written here simply
as ∂th = G(hn, ∂xmh), where G involves various algebraic
powers and differentiation orders (n,m) of h. Within this
approach the film evolution is modeled in terms of lubrica-
tion theory, which results in the enslaving of flow variables
to the local film height, i.e. a reduction to some effective
dynamics for the interface through the elimination of de-
grees of freedom associated to velocity field.



278 The European Physical Journal B

The simplification brought by this reduction has
mainly permitted a first study of the nonlinear develop-
ment of waves using the tools of dynamical systems the-
ory [13], study that was continued using the celebrated
Kuramoto–Sivashinsky (KS) equation [14], obtained in the
present context by taking the limit of small amplitude
modulations [15,16]. By contrast with the KS equation,
Benney’s equation can lead to a non-physical evolution
with the development of finite-time singularities [13,17].
Such an evolution strongly limits its use to a narrow neigh-
borhood of the threshold where the KS equation —that
does not behave so wildly— is expected to give already
valuable results.

Numerical investigation of the full Navier-Stokes (NS)
equations, though conceivable, is cumbersome owing to
the presence of a free boundary. Though it can (should)
serve as a check point for models in the two-dimensional
case, the only one to be reliably implemented up to
now [18,19], the numerical approach does not give much
insight into the mechanisms of chaotic wave motion and
pattern formation. An intermediate level of modeling is
obtained in terms of so-called boundary layers equations
(BL) [20], i.e. reduced NS equations incorporating the
condition that stream-wise gradients are small when com-
pared to cross-stream variations. Though one is left with a
problem that has the same dimensionality as the original
one, it is a little simpler and leads to lighter computations
giving realistic results [21].

A subsequent level of modeling is achieved by assum-
ing a specific shape for the velocity profile and averaging
the stream-wise momentum equation in order to relate the

thickness h of the film to the local flow rate q =
∫ h

0 u(y) dy.
The first such integral boundary layer model was derived
by Shkadov [22]. We will reobtain it below as system (49,
50). The assumption about the velocity profile and the
averaging procedure are in fact two specific ingredients of
a more general method for solving the BL equations in
terms of weighted residuals [23] instead of standard dis-
crete methods (e.g., finite differences). The limitations of
Shkadov’s model come from the lack of freedom in the
description of the hydrodynamic fields and the too rus-
tic character of the consistency condition expressed via
the averaging. In spite of these limitations, problems that
could only be approached through black-box numerical
computations of full or reduced NS equations can now be
dealt with a set of partial differential equations with re-
duced space dimensionality (1 instead of 2). Accordingly,
properties of nonlinear waves can again be studied in their
rest-frame using the tools of dynamical systems theory [24,
25]. Better approximations of the flow have to be devel-
oped in order to get more realistic results. This requisite
has lead to the derivation of improved models by weighted
residual methods [9,10], by expanding the hydrodynamic
fields on a functional basis of the cross-stream variable
y, finding relations between the coefficients of the (trun-
cated) expansion from the NS or BL equations by some
specific projection rule, and further applying the resulting
set of equations to concrete problems such as the structure
of solitary waves. In the absence of clear physical meaning
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Fig. 1. Fluid film flowing down an inclined plane: definition
of the geometry.

for the coefficients appearing in the expansion, the inter-
pretation of such studies is not straightforward and one
is often confined to a comparison of the obtained output
with that of concurrent models and numerical solutions
of BL or NS equations, or with the results of laboratory
experiments.

In this paper, after having recalled the governing equa-
tions (Sect. 2) of the two-dimensional problem to which we
will restrict, we briefly repeat the first steps of the Ben-
ney’s gradient expansion for the dynamics of film flows
(Sect. 3) that will be useful to us afterward. We then de-
velop our model in two steps, mostly for pedagogical rea-
sons (Sects. 4 and 5). We follow the same general strategy
as Yu et al. [9] and use BL equations as a starting point,
which has the interest of focusing on the appropriate long
wavelength properties of the flow right from the begin-
ning. We also use polynomials to expand the velocity field
but, to stay closer to the physics of the problem, instead of
choosing some general systematic expressions of increas-
ing degree, we prefer to take the specific polynomials that
appear in Benney’s gradient expansion and to introduce
combinations of coefficients of the lowest order terms that
may be given an immediate physical interpretation. The
first-order problem (Sect. 4) involves two polynomials, the
zeroth-order parabolic profile and a correction issued from
Benney’s expansion. Relevant coefficients involve the flow
rate q, and a new field called τ measuring the departure of
the wall shear from the shear predicted by a parabolic ve-
locity profile. At this order, τ is slaved to h and q and can
be eliminated adiabatically, yielding a set of two partial
differential equations (9, 58) with the same structure as
Shkadov’s model but different coefficients. With respect to
the latter, the advantage of our first-order model is to give
a more accurate description of the vicinity of the instabil-
ity threshold, and in particular to predict the critical flow
rate exactly. At second order (Sect. 5), τ becomes a degree
of freedom for its own and four well-chosen supplementary
polynomials are introduced, the coefficients of which can
be eliminated to yield a system of three equations (78–
80) governing h, q, and τ . Sections 6 and 7 are devoted



C. Ruyer-Quil and P. Manneville: Modeling film flows down inclined planes 279

to a discussion of our achievements focusing on a quali-
tative comparison of experimental and numerical results
in the linear and nonlinear regimes, with preliminary nu-
merical simulations of (78–80) and on the physical under-
standing that can be expected from our model.

2 Governing equations

The geometry is defined in Figure 1: the inclined plane
makes an angle β with the horizontal. As usual, x̂, ŷ,
and ẑ are unit vectors in the stream-wise, cross-stream,
and span-wise directions respectively. Here we only con-
sider the two-dimensional case where the solution is inde-
pendent of coordinate z, the extension to the full three-
dimensional case does not present conceptual difficulties.

The basic (2D) equations read

ρ [∂tu+u ∂xu+v ∂yu] =−∂xp+ρg sinβ+µ (∂xx+∂yy)u,
(1)

ρ [∂tv+u ∂xv+v ∂yv] =−∂yp−ρg cosβ+µ (∂xx + ∂yy) v,
(2)

∂xu+ ∂yv = 0, (3)

where u and v denote x and y velocity components, and
p the pressure. ρ is the density, µ the viscosity, and g the
intensity of the gravitational acceleration.

These equations must be completed with boundary
conditions at y = 0 or y = h. They will be denoted as
w
∣∣
0

or w
∣∣
h

where w(x, y, t) is a generic name for the pres-
sure field, the velocity components and their derivatives.
The first such condition:

∂th+ u
∣∣
h
∂xh = v

∣∣
h
, (4)

simply expresses the fact that the interface h(x, t) is a
material line. The continuity of the stress at y = h adds
two more equations. The normal component reads

γ ∂xxh[
1 + (∂xh)

2
]3/2 +

2µ

1 + (∂xh)
2

[
∂xh

(
∂yu
∣∣
h

+ ∂xv
∣∣
h

)
− (∂xh)

2
∂xu

∣∣
h
− ∂yv

∣∣
h

]
+ p
∣∣
h
− pa = 0 (5)

where coefficient γ is the surface tension and the term in
∂xxh describes the curvature of the interface (pa is the
atmospheric pressure). For the tangential component one
gets

0=2∂xh
(
∂yv
∣∣
h
−∂xu

∣∣
h

)
+
[
1−(∂xh)

2
] (
∂yu
∣∣
h

+∂xv
∣∣
h

)
.

(6)

Finally, the no-slip condition at the rigid bottom, y = 0,
reads:

u
∣∣
0

= v
∣∣
0

= 0. (7)

It will turn interesting to replace the kinematic condition
(4) at y = h by an equivalent equation derived from the

continuity condition. Integrating (3) over the interval [0, h]
we obtain:

0 =

∫ h

0

(∂xu+ ∂yv) dy =

∫ h

0

∂xu dy + v
∣∣
h
− v
∣∣
0

= ∂th+

[
u
∣∣
h
∂xh+

∫ h

0

∂xu dy

]
= ∂th+ ∂x

∫ h

0

u dy

using v
∣∣
h

given by (4) and v
∣∣
0

= 0 from (7). Defining the
local instantaneous flow rate as

q(x, t) =

∫ h(x,t)

0

u(x, y, t)dy, (8)

we arrive at the integral condition

∂th+ ∂xq = 0. (9)

System (1-7) admits a trivial solution corresponding to a
steady constant-thickness film, often called the Nusselt so-
lution (hence the subscript “N” in the following). Assum-
ing ∂t ≡ 0 and ∂x ≡ 0, one simply gets v ≡ 0, p

∣∣
h

= pa
and

µ∂yyu+ρg sinβ=0, ∂yp=−ρg cosβ, u
∣∣
0
=0, ∂yu

∣∣
h

=0,

which, for a film of thickness hN yields:

u(y)=
ρg sinβ

2µ
y(2hN − y), p(y)=pa + ρg cosβ(hN − y),

where the atmospheric pressure pa is set to zero in the
following. The corresponding flow rate is given by

qN =

∫ h

0

u(y)dy =
ρg sinβh3

N

3µ
,

from which an average velocity uN can be defined by qN =
hNuN , i.e. uN = ρg sinβh2

N/3µ.
At this stage, it is usual to turn to dimensionless

equations. Different scalings can be used. The first and
most obvious one takes hN and hN/uN as length and
time units, see note [26]. Here, we will take another scal-
ing defined without reference to the flow by construct-
ing the length and time units from g (LT−2) and the
kinematic viscosity ν = µ/ρ (L2T−1). Taking for conve-
nience g sinβ instead of g, this yields L = ν2/3(g sinβ)−1/3

and T = ν1/3(g sinβ)−2/3. The velocity unit is then
U = LT−1 = (νg sinβ)1/3. For the pressure, we get
ρ(νg sinβ)2/3. The surface tension is then measured by
the Kapitza number Γ = γ

/[
ρν4/3(g sinβ)1/3

]
. In fact,

Kapitza was concerned with vertical planes for which
β = π/2 so that the factor sinβ did not appear in his
definition. It is a matter of convenience to include it or
not. The two numbers, with and without, are of the same
order of magnitude as long as one does not consider nearly
horizontal planes.
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Inserting the corresponding variable changes we obtain

∂tu+u ∂xu+v ∂yu =−∂xp+1+(∂xx+∂yy)u, (10)

∂tv+u ∂xv+v ∂yv =−∂yp−B+(∂xx+∂yy) v, (11)

where B = cotβ and, for the normal-stress boundary con-
dition at y = h

Γ ∂xxh[
1 + (∂xh)

2
]3/2 +

2

1 + (∂xh)
2

[
∂xh

(
∂yu
∣∣
h

+ ∂xv
∣∣
h

)
− (∂xh)2∂xu

∣∣
h
− ∂yv

∣∣
h

]
+ p
∣∣
h

= 0, (12)

while the continuity condition (3), the kinematic condition
(4) at y = h and the remaining boundary conditions (6,7)
are left unchanged. In this unit system where g sinβ = ν =
ρ = 1, the Nusselt flow rate given by qN = uNhN = 1

3h
3
N

is numerically equal to the Reynolds number R as defined
in note [26].

3 Gradient expansion

Laboratory experiments show that the Nusselt solution
may not be relevant, being possibly unstable against waves
at the surface of the film. However, as long as the flow rate
is not too large, the interface remains smooth at the scale
of the film thickness as measured locally by h(x, t). This
feature can be introduced as a supplementary assumption
and solutions to the equations can be searched in the form
of a systematic expansion in powers of a formal parame-
ter ε expressing the smallness of the stream-wise space
derivative ∂x.

At order zero, the problem simply reads

∂yyu
(0) = −1, ∂yp

(0) = −B, ∂yu
(0)
∣∣
h

= 0,

u(0)
∣∣
0

= 0, p(0)
∣∣
h

= 0,

so that the Nusselt solution is recovered locally with
h(x, t) as reference height:

u(0)(y) =
1

2
y(2h− y), v(0) ≡ 0, p(0) = B(h− y),

(13)

yielding a local flow rate q(0) = 1
3h

3. This is an exact solu-
tion to the problem, provided that the thickness gradient
is strictly zero. When this is no longer the case, correc-
tions have to be introduced. Assuming that h ≡ h(x, t)
but remains slowly varying, one now looks for a solution
“close to” the stationary uniform flow in the form:

u = u(0)(h(x, t), y) + u(1)(x, y, t) + u(2)(x, y, t) + . . . ,

v = v(1)(x, y, t) + v(2)(x, y, t) + . . . ,

p = p(0)(h(x, t), y) + p(1)(x, y, t) + p(2)(x, y, t) + . . . ,

where the corrections are formally of order 1, 2, . . .

When developing the calculation systematically, we
should notice first that the status of the kinematic in-
terface condition (4) or its integral version (9) is different
from that of the other equations. As a matter of fact, the
sought-after solution has to be seen as a functional of h
and its successive space-time derivatives, all considered as
independent quantities. Once it is found at a given or-
der, the result can be inserted in (9) (or (4)), which then
presents itself as a constraint relating h and its succes-
sive partial derivatives, i.e. an evolution equation for h.
Furthermore, it is immediately seen that this equation is
formally one order higher than the solution found. So,
already at zeroth order we get the following nontrivial re-
lation

∂th+ ∂xq
(0) ≡ ∂th+ h2∂xh = 0. (14)

However, letting H = h2 leads to ∂tH+H∂xH = 0, i.e. the
Burgers equation, an equation known to produce shocks
and hence steep gradients incompatible with the slow-
variation assumption. Continuing the expansion is there-
fore necessary for finding gradient-limiting terms playing
the role of viscous dissipation in the Burgers case. Though
the result is not guaranteed to be well-behaved, let us re-
view the first steps of the expansion.

At first order we get:

∂yyu
(1)−v(1)∂yu

(0) =∂tu
(0)+u(0)∂xu

(0)+∂xp
(0), (15)

∂yyv
(1) − ∂yp

(1) = 0, (16)

∂yv
(1) = −∂xu

(0), (17)

to be solved with the appropriate boundary conditions:

p(1)
∣∣
h
− 2∂yv

(1)
∣∣
h

= 0, (18)

∂yu
(1)
∣∣
h

= 0, (19)

(a) u(1)
∣∣
0

= 0, (b) v(1)
∣∣
0

= 0. (20)

(Note that ∂yu
(0)
∣∣
h

= 0 has been taken into account to

simplify the r.h.s. of (18).) Equation (17) yields v(1) =
− 1

2y
2∂xh when making use of (20b). The stream-wise

correction u(1) is then obtained from (15) together with
boundary conditions (19, 20a) and the pressure correction
from (16) subject to (18). We obtain

u(1)(x, y, t) =
1

2

(
1

3
y3 − h2y

)
∂th+

[
1

6

(
1

4
y4 − h3y

)
h

+ B

(
1

2
y2 − hy

)]
∂xh, (21)

p(1)(x, y, t) = −(y + h)∂xh. (22)

To complete the calculation at first order it remains to
express the kinematic condition in integral form (9). With

u = u(0) +u(1), we obtain for q =
∫ h

0 u(y) dy an expression

of the form 1
3h

3 + a(h)∂th+ b(h)∂xh, hence the evolution
equation for h(x, t):

∂th+ h2∂xh+ ∂x [a(h)∂th+ b(h)∂xh] = 0, (23)
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where a(h) = − 5
24h

4 and b(h) = − 3
40h

6 − 1
3Bh

3. The

expression of u(1) (21) and equation (23) can be put in
simpler forms by noting that the bracketed contribution
is already of first order, so that ∂th can be replaced by its
zeroth order estimate −h2∂xh. This leads to:

u(1) =

[
1

3

(
1

8
y4−

1

2
hy3+h3y

)
h+B

(
1

2
y2−hy

)]
∂xh,

(24)

∂th+ h2∂xh+
1

3
∂x

[(
2

5
h6 −Bh3

)
∂xh

]
= 0. (25)

Looking for a nearly uniform solution h(x, t) = hN+η(x, t)
we obtain at lowest order:

∂tη + h2
N∂xη +

1

3
h3
N

(
2

5
h3
N −B

)
∂xxη = 0. (26)

This shows that in a reference frame moving at velocity
V = h2

N = 3uN , with coordinate ξ = x−V t, the interface
modulations are controlled by a diffusion equation:

∂tη = D∂ξξη, (27)

where

D =
1

3
h3
N

(
B −

2

5
h3
N

)
, (28)

which leads to the known result that fluid films flowing
down an inclined plane are unstable against waves (D < 0)
when their thickness becomes larger than some thresh-
old value hNc given by: h3

Nc = 5
2B (= 3Rc according to

the definition of the Reynolds number R in note [26]). In
terms of the flow rate (usual control parameter) we can
write D = 6

5qN (qNc − qN ) where qNc = 1
3h

3
Nc = 5

6B.
Flows along vertical planes are therefore always unstable
since θ = π/2 implies B = 0 and hence qNc = 0, so that
D = − 6

5q
2
N < 0 for all qN . Whereas the stabilizing ef-

fect of gravity is obvious from the expression of D, the
origin of the destabilizing contribution is more difficult to
trace back. Instability comes via the term ∂tu

(0) in (15)
[27] converted into a space derivative term using (14) and
partly compensated by the other source terms in (15).

At this stage, gradient-limiting terms playing the role
of viscosity for the Burgers equation are effective only for
infinitesimal interface fluctuations of thin films at suffi-
ciently low flow rate (hN < hNc, qN < qNc, hence D > 0).
The expansion has therefore to be pushed at higher orders
to determine the behavior of thicker films, the more as the
amplification rate of the modulations with wave-vector k
diverge as |D|k2 for D < 0 when k increases. At second
order we have

∂yyu
(2)−v(2)∂yu

(0) = ∂tu
(1)+u(0)∂xu

(1)+u(1)∂xu
(0)

+v(1)∂yu
(1)−∂xp

(1)−∂xxu
(0),

(29)

∂yyv
(2)−∂yp

(2) = ∂tv
(1)+u(0)∂xv

(1)+v(1)∂yv
(1),

(30)

∂yv
(2) = −∂xu

(1), (31)

and

p(2)
∣∣
h
− 2∂yv

(2)
∣∣
h

= −Γ∂xxh, (32)

∂yu
(2)
∣∣
h

= 4∂xh∂xu
(0)
∣∣
h
− ∂xv

(1)
∣∣
h
, (33)

(a) u(2)
∣∣
0

= 0, (b) v(2)
∣∣
0

= 0. (34)

where (19), (17) and the fact that ∂yu
(0)
∣∣
h

= 0 have been

used to simplify (32) and (33), respectively. As before, v(2)

is derived from (31) subject to (34b), u(2) from (29) using
v(2) just found with boundary conditions (33, 34a), which
is enough to determine the evolution equation for h(x, t)
at this order (see [28] for a detailed computation). In the
same time, the pressure p(2) is obtained from (30, 32). So,
surface tension effects supposed to smooth out the steep
space gradients of interface modulations now enter the
solution via the boundary condition (32) on p(2). We have
thus to continue the expansion and observe that they will
enter the solution at third order through a term −∂xp(2)

in the equation governing u(3) playing the same role as
the term −∂xp(1) in (29).

It is easy to demonstrate recursively that at each order
n the velocity field u(n) can be written in the form of
a polynomial in y, h and its derivatives ∂mx h. A careful
examination of the derivation process also shows that, for
n ≥ 2, the term of highest degree in y appearing in u(n)

is of degree 4n and originates from inertial interactions
between the Nusselt flow profile u(0) and its correction
at order n − 1, u(n−1), via u(0)∂xu

(n−1) + v(n)∂yu
(0) =

u(0)∂xu
(n−1) − ∂yu(0)

∫ y
0 ∂xu

(n−1) dy. Moreover, it can be

seen that, if cn is the coefficient of the term y4n in u(n),
then

cn+1 = −
4n− 1

2(4n+ 1)(4n+ 3)(4n+ 4)
cn for n ≥ 1,

so that c2 = − 1
4480 , c3 = 1

1520640 etc., showing that
the contributions of these highest-degree terms become
quickly negligible in the evolution equation for h at order
n, ∂th+ ∂x(q(0) + . . .+ q(n)) = 0.

However, the line of thought followed up to now sticks
to a strict gradient expansion. Accordingly the different
terms retained at a given order in the final evolution equa-
tion for h are supposed to scale as the corresponding pow-
ers of the gradients ∂x and ∂t. As soon as the latter are
no longer mathematically infinitesimal, from a physical
viewpoint the actual weight of a given term in the solu-
tion depends on the conditions of the experiment (Γ , B,
qN ). Letting µ = supx |h

−1∂xh| measure the space gradi-
ent, we observe in particular that the smoothing effects of
surface tension scale as Γµ2 in the expression of the pres-
sure and that, for µ finite but small and Γ large enough,
their influence can be felt before that of other terms, even
of lower formal order. To make this explicit, we have just
to take the term involving Γ into account at a stage of
the expansion earlier than that corresponding to its for-
mal order, which can be done already at the lowest pos-
sible order, i.e. by assuming that the capillary term con-
tributes to the evaluation of the pressure at order zero.
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Boundary condition (12) then reads p
∣∣
h

= −Γ∂xxh so
that the pressure is no longer given as in (13) but rather
by

p(0) = B(h− y)− Γ∂xxh. (35)

The solution at first order has to be modified accordingly,
which yields

∂th+ h2∂xh+
1

3
∂x

[(
2

5
h6 −Bh3

)
∂xh+ Γh3∂x3h

]
= 0.

(36)

instead of (25).
Considering infinitesimal modulations, in lieu of (27)

we now get

∂tη = D∂ξξη −K∂ξξξξη, (37)

with K = 1
3h

3
NΓ = qNΓ . As expected from Fourier

analysis with perturbations ∝ exp(ikx), the last term in
(37) damps out short-wavelength fluctuations, at a rate
−Kk4 that dominates the destabilizing contribution |D|k2

when D is negative. The two terms counterbalance each
other exactly for a certain cut-off wave-vector kc given
by k2

c = |D|/K = 6
5 (qN − qNc)/Γ . This wave-vector de-

fines a scale for which, in order of magnitude, capillary
effects enter the problem and work to limit the divergence
of space gradients. A low order truncation of the expan-
sion will therefore be acceptable if kc is physically small
enough, which will always be the case close to the insta-
bility threshold qNc.

Equation (36), usually called the Benney equation, is
thus expected to govern the interface modulations with
space gradients at most of order kc as long as kc � 1, i.e.
at flow rates close to the threshold in a range depending on
the value of Γ . The linear argument above using (37) gives
hints on the behavior of solutions to (36) only because the
instability turns out to be supercritical, so that a weakly-
nonlinear theory accounts for the continuous growth of
the amplitude of modulations in the neighborhood of the
threshold. In fact, owing to the strong nonlinearities as-
sociated with the high powers of h present, this neigh-
borhood is quite narrow and typical solutions to (36) dis-
play finite-time singularities not so far from the threshold.
From the additive nature of the contribution of the Γ -term
in (12) leading directly to (35), it is clear that, depending
on the order in ∂x one decides to introduce it, other gra-
dient terms in h will appear in (36), which will play an
effective role if kc is too large, i.e. in general K too small,
hence Γ too small. Taking these terms into account does
not solve the problem of finite-time singularities, whose
origin may be attributed to the strongly nonlinear charac-
ter of the evolution equation for h, which involves rapidly
increasing powers of h as the gradient expansion proceeds.

4 First-order model

In the gradient expansion, the flow variables are sup-
posed to be strictly enslaved to the local thickness h which

plays the role of an effective degree of freedom governed
by a Benney-like evolution equation. Another approach is
then needed to deal with the dynamics of the film in a
context where this enslaving is partly relaxed and other
effective degrees of freedom are introduced, under the con-
straint that these new variables should remain slowly vari-
able in x and t and that exact results of the gradient
expansion should be recovered in the appropriate limit.
Up to now, the hydrodynamic fields (u, v, p) could be ex-
panded on a special set of polynomials in y with slowly
varying coefficients functions of h(x, t) and its derivatives.
If the flow modulations are sufficiently slow, these fields
should not be far from their estimates obtained by the gra-
dient expansion. In other terms, the residue of a Galerkin
expansion —or of an approximation derived from a more
general weighted residual method— based on these poly-
nomials should be intrinsically small. The coefficients of
the expansion would then be considered as the sought-
after effective degrees of freedom, and they would be gov-
erned by equations generalizing the expressions asymp-
totically valid when modulations are infinitely slow. The
required extension would give some latitude of evolution
to these coefficients around the asymptotic value obtained
from the gradient expansion. The model developed below
is an attempt to implement this general idea in the most
“economical” way.

Let us begin with the set of equations consistent at
first order except for surface tension effects that, though
formally of higher order, are included here owing to their
gradient-limiting role, as discussed above. The problem to
be solved reads:

∂tu+ u∂xu+ v∂yu+ ∂xp− ∂yyu− 1 = 0, (38)

∂yp+B − ∂yyv = 0, (39)

∂xu+ ∂yv = 0, (40)

with boundary conditions

p
∣∣
h

+ Γ∂xxh− 2∂yv
∣∣
h

= 0, (41)

∂yu
∣∣
h

= 0, (42)

u
∣∣
0

= 0, v
∣∣
0

= 0, (43)

and of course the kinematic condition at the interface
which, in integral form (9), accounts for mass conserva-
tion on average over the thickness.

Integrating (39) with the help of boundary conditions
(41–42) we get p = B(h − y) + ∂yv + ∂yv

∣∣
h
− Γ∂xxh and

further eliminate ∂xp from (38). Because ∂yv = −∂xu is a
first order term, its derivative is of second order and can
be dropped of. Therefore, our set of equations read

∂tu+ u∂xu+ v∂yu− ∂yyu = 1−B∂xh+ Γ∂x3h, (44)

∂xu+ ∂yv = 0, (45)

with boundary conditions (42–43). (44–45) is sometimes
called boundary-layer equations (BL).

Let us now consider the averaging of equation (44) that
gives the balance of x-momentum (von Kármán’s equation
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in the context of boundary layers). We obtain:∫ h

0

[∂tu+u∂xu+v∂yu−∂yyu] dy=h+Γh∂x3h−Bh∂xh,

(46)

which can be transformed into

∂t

∫ h

0

u dy+∂x

∫ h

0

u2 dy=h−∂yu
∣∣
0
+Γh∂x3h−Bh∂xh.

(47)

Transformation of the l.h.s. is similar to that leading to
(9). The term ∂yu

∣∣
0
, representing the shear at the wall,

will be denoted τw in the following. On the l.h.s. we rec-

ognize q =
∫ h

0 u(y) dy and we can define a new averaged

field r =
∫ h

0
u2(y) dy. With these notations (47) reads:

∂tq + ∂xr = h (1 + Γ∂x3h−B∂xh)− τw. (48)

Assuming a given velocity profile, one arrives at a set of
two equations (9) and (48) for two unknowns h and q, since
r can then be computed from q. Simply taking Kapitza’s
parabolic profile u(y) ∝ 1

2ζ(2−ζ) where ζ = y/h, we have

r = 6
5 (q2/h), and τw = 3q/h2. Inserting these estimates

in (48) we obtain Shkadov’s model [22]:

∂th = −∂xq, (49)

∂tq = h−3
q

h2
−

12

5

q

h
∂xq+

(
6

5

q2

h2
−Bh

)
∂xh+Γh∂x3h.

(50)

Now, taking (49, 50) as a set of primitive equations, let
us consider slow modulations to the uniform solution that
verifies q = 1

3h
3 = q(0). We are now in position to perform

a gradient expansion parallel to the previous one by as-
suming q = q(0) +q(1) +q(2) + . . . , where q(1), q(2), etc. are
formally of order 1, 2, etc. At lowest order we obtain for
the l.h.s. of (50): ∂tq

(0) = ∂t(
1
3h

3) = h2∂th = −h2∂xq
(0) =

−h2(h2∂xh) = −h4∂xh, and for the r.h.s.:

−3
q(1)

h2
+

[
6

5

q(0)2

h2
−Bh

]
∂xh−

12

5

q(0)

h
∂xq

(0)+Γh∂x3h,

where, as before, the surface-tension term has been intro-
duced earlier than dictated by its formal order. This leads
to the estimate

q(1) =
1

9
h6∂xh−

1

3
Bh3∂xh+

1

3
Γh3∂x3h,

which, when replaced in ∂th + ∂x
[
q(0) + q(1)

]
= 0, gives

the following evolution equation

∂th+ h2∂xh+
1

3
∂x

[(
1

3
h6 −Bh3

)
∂xh+ Γh3∂x3h

]
= 0,

(51)

which differs from equation (36) by the coefficient in front
of h6. This discrepancy leads to an overestimation of
the critical Reynolds number Rc,IBL = B [29]. Proko-
piou et al. [8] and Lee and Mei [10] tried to get rid of
this discrepancy by starting from systems of equations
more complete than (44–45), while keeping the zeroth-
order parabolic velocity profile. These approaches failed
to recover the correct critical Reynolds number prediction
Rc = 5

6B and led back to Rc,IBL. The cause of this failure
thus seems to be the lack of flexibility of the assump-
tion about the velocity profile rather than the omission of
terms in the set of primitive equations.

In the spirit of Shkadov’s assumption, a whole family
of models analogous to (49–50), with just different numer-
ical constants, would be obtained by using velocity profiles
expressed in terms of a single, possibly better fitted, func-
tion of the reduced variable ζ = y/h, u = a(x, t) g(ζ).
Such velocity profiles are sometimes called “similar” solu-
tions in boundary-layer theory [30]. The defect of such an
approach comes from a somewhat arbitrary freezing of the
effective degrees of freedom involved in the velocity field.
Here we want to relax part of this constraint by assuming
that u is a superposition of functions with slow variable
coefficients so that the quantities r and τw are less rigidly
related to q and h.

So, keeping in mind the results of the long-wavelength
expansion, we may reasonably admit that Shkadov’s sim-
ple assumption, valid at order zero, can be improved by
correcting the parabolic profile with the polynomials that
appear in the gradient expansion at higher orders, or more
precisely, linearly independent combinations of these poly-
nomials adequately chosen for better computational ease.
So, let us expand u as

u(x, y, t) = b0(x, t)f (0)(y/h) + b1(x, t)f (1)(y/h), (52)

where f (0)(ζ) ≡ − 1
2ζ

2 + ζ and f (1)(ζ) ≡
1
6

(
1
4ζ

4 − ζ3 + ζ2
)
. Whereas u(0) in (13) is obviously

proportional to f (0), a little algebra is necessary to check
that u(1) in (24) can indeed be written as some specific
combination of f (0) and f (1) (cf. note [31]).

Apart from the fact that the so-far unknown fields b0
and b1 are supposed to be slow functions of x and t, by
definition of q they must fulfill

q =

∫ h

0

u(y) dy =
1

3
h

(
b0 +

1

15
b1

)
. (53)

At this stage we have three unknowns, h, b0, and b1 but
from (53) we see that we can pass to a set formed by h, q
and b1, with b0 given by b0 = (3q/h)− 1

15b1. Inserting this

in τw ≡ ∂yu
∣∣
0

= b0/h we get τw = (3q/h2)− (b1/15h). In
that way, b1 appears as a correction to the shear at the
plate that would be created by a parabolic velocity profile
corresponding to a film with thickness h and flow rate q.
To make this explicit, let us re-define b1 as b1 = −15hτ so
that

τw =
3q

h2
+ τ. (54)
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What we have just done is to pass from the original alge-
braic variables b0 and b1 to the more physically minded
variables q and τ . Accordingly (52) can be rewritten as

u =

(
3q

h
+ hτ

)
f (0)(y/h)− 15hτf (1)(y/h). (55)

But, h, q, and τ still make a set of three variables for
which we have only two equations (9, 48). Several strate-
gies can be followed to find equations for the unknowns by
the method of weighted residual. One can for example av-
erage the governing equations with a series of weights. (In
the classical Galerkin method the set of weight functions
is simply the set of the basis functions, further assumed
to fulfill the boundary conditions.) Here equation (48) is
just the averaged version of (44) with the trivial uniform
weight and, as shown previously, (9) is nothing but the
averaged continuity equation (3) simplified by using the
kinematic interface evolution equation (4). An alternate
method consists in imposing conditions at special points
of the domain (collocation). Here, to obtain complemen-
tary equations, we will follow this last method and im-
pose the fulfillment of additional conditions at y = 0 and
y = h. These relations will be obtained by differentiat-
ing the equations of motion with respect to y and further
evaluating them at the boundaries (see [32]). Conditions
at y = 0 can be interpreted as relations giving the coeffi-
cients of a Taylor expansion of the solution as a function
of y.

A condition useful at first order is obtained from (44)
differentiated with respect to y:

∂tyu+ u∂xyu+ v∂yyu− ∂y3u = 0,

further evaluated at y = 0, which gives:

∂t(∂yu
∣∣
0
)− ∂y3u

∣∣
0

= 0. (56)

Equation (56) tells us that the fluctuations of the shear
at the wall are directly linked to the presence of correc-
tions to the velocity profile beyond the parabolic shape
for which they cancel identically. From (55) and (54), fur-
ther observing that τ is a first-order correction so that the
term ∂tτ is of higher order and can be dropped from (56),
we get the required supplementary equation

∂t

(
3q

h2

)
− 15

τ

h2
= 0, (57)

expressing the correction τ in terms of the time derivative
of the other fields. Inserting the resulting evaluation of τw
in (48), using (9) to eliminate ∂th and the (here sufficient)
zeroth-order estimate r = 6

5 (q2/h), we get

∂tq=
5

6
h−

5

2

q

h2
−

7

3

q

h
∂xq+

(
q2

h2
−

5

6
Bh

)
∂xh+

5

6
Γh∂x3h.

(58)

When added to (9), equation (58) completes the model at
first order as a system of two partial differential equations

for the two unknowns h and q. Having the same structure
as Shkadov’s model but with slightly different coefficients,
it will be called “modified Shkadov model”. The correc-
tions arise from a better account of the fluctuations of
τw introduced via the third derivative term in (56) by
the ζ3-term in f (1), which can be traced back to the ∂th
contribution of u(1) in (21) already at the origin of the
instability of the plane interface.

Now, let us consider a gradient expansion of (9, 58)
similar to the previous ones by assuming q = q(0) + q(1) +
q(2) + · · · . We are this time led to

q(1) =
2

15
h6∂xh−

1

3
Bh3∂xh+

1

3
Γh3∂x3h,

which, when replaced in ∂th+∂x
[
q(0) + q(1)

]
= 0, gives us

back the Benney equation (36). So, by construction, the
near-critical behavior is correctly predicted by our mod-
ified Shkadov model, which no longer overestimates the
value of the stability threshold.

Though predictions in the asymptotic domain far be-
yond the near-critical region are not improved by the cor-
rection, a step has clearly been made in the right direction.
In particular, the derivation implies that the shear at the
wall is a slowly varying quantity. At order zero, q is slaved
to h (or the reverse) and τw does not fluctuate (inject-
ing a parabolic profile for u in (56) gives ∂t(∂yu

∣∣
0
) = 0).

At order one, q and h are two independent slowly vary-
ing effective degrees of freedom while τw remains rigidly
linked to q and h through (57). Let us now proceed to
the next step. Anticipating the result, we will introduce
four additional fields b2, . . . , b5 associated with the ve-
locity corrections introduced by the gradient expansion
at second order. Supplementary conditions at boundaries
analogous to (56) will be derived which, when imposed to
the solution will allow us to eliminate these supplemen-
tary fields so that we will be left with three equations for
three unknowns, h, q and τ , that will play the role of an
additional independent effective degree of freedom. The
derivation detailed in the next section can be skipped by
those only interested in the result, equations (78–80).

5 Second-order model

Let us first write down the set of equations consistent at
second order. Clearly all terms in (10), rewritten here for
convenience as

∂tu+ u∂xu+ v∂yu+ ∂xp− (∂xx + ∂yy)u− 1 = 0, (59)

are relevant. Such is not the case for (11) which can be
simplified as

∂yp− ∂yyv +B = 0. (60)

It can indeed be seen that the contribution of the terms
∂tv + u∂xv + v∂yv is in fact of higher order, owing to the
differentiation of p with respect to x in (59) as seen from
the calculation leading to (63) below. Of course u and v
remain linked by the continuity equation (3).
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For the boundary conditions we have

p
∣∣
h

+ Γ∂xxh− 2∂yv
∣∣
h

= 0, (61)

−4∂xh∂xu
∣∣
h

+ ∂yu
∣∣
h

+ ∂xv
∣∣
h

= 0, (62)

to which we add (43) and of course (9).
Let us transform (59). Integrating (60) with respect to

y we get p(y) = −By+∂yv+K. The integration constant
K, in fact a function of x and t, is obtained from (61)
which gives K = Bh + ∂yv

∣∣
h
− Γ∂xxh, hence p = B(h −

y) + ∂yv + ∂yv
∣∣
h
− Γ∂xxh. Inserting this expression into

(59) we get:

∂tu+ u∂xu+ v∂yu = 1 + ∂yyu− 2∂xyv + ∂x

[
∂xu

∣∣
h

]
−B∂xh+ Γ∂x3h, (63)

where the continuity equation has been used to transform
∂xxu into −∂xyv and −∂yv

∣∣
h

into ∂xu
∣∣
h

(notice that this
last term is a function of x and t through h and is differ-
entiated with respect to x as such). Averaging (63) over
the thickness h as before we obtain

∂tq + ∂xr = h
[
1 + Γ∂x3h−B∂xh+ ∂x

(
∂xu

∣∣
h

) ]
−τw + ∂yu

∣∣
h
− 2∂xv

∣∣
h
,

where q, r, and τw are defined as before. (The second
boundary term ∂xv

∣∣
0

resulting from the explicit integra-
tion of ∂xyv has been dropped since it cancels automat-
ically by virtue of v

∣∣
0
≡ 0.) Making use of (62) we can

simplify this equation: explicitly, we have h∂x
(
∂xu

∣∣
h

)
+

∂yu
∣∣
h
− 2∂xv

∣∣
h

= h∂x
(
∂xu

∣∣
h

)
+
[
4∂xh∂xu

∣∣
h
− ∂xv

∣∣
h

]
−

2∂xv
∣∣
h

=
[
h∂x

(
∂xu

∣∣
h

)
+ ∂xh∂xu

∣∣
h

]
+ 3∂xh∂xu

∣∣
h
−

3∂xv
∣∣
h

= ∂x
[
h∂xu

∣∣
h

]
− 3∂xh∂yv

∣∣
h
− 3∂xv

∣∣
h

=

∂x
[
h∂xu

∣∣
h

]
− 3∂x

(
v
∣∣
h

)
= ∂x

[
h∂xu

∣∣
h
− 3v

∣∣
h

]
. Finally we

arrive at

∂tq+∂xr=h
[
1+Γ∂x3h−B∂xh

]
−τw+∂x

[
h∂xu

∣∣
h
−3v

∣∣
h

]
,

(64)

to be compared with its first order counter-part (48).
The two first polynomials to be used in addition to

f (0) and f (1) are f (2) = 1
2ζ

2 and f (3) = 1
12

(
− 1

2ζ
4 + ζ2

)
.

The set
{
f (0), f (1), f (2), f (3)

}
is easily seen to form a basis

of the space of polynomials of degree ≤ 4 that cancel at
y = 0. The two last polynomials f (4) = 1

120

(
− 1

6ζ
6 + ζ5

)
and f (5) = 1

240

(
1
56ζ

8 − 1
7ζ

7 + 1
3ζ

6
)

have been chosen so
as to permit the reconstruction of all the polynomials
entering the gradient expansion at second order. Their
seemingly exotic coefficients have been fixed by the ad-
ditional constraints: d5f (4)/dζ5|0 = 1, d6f (5)/dζ6|0 = 1,
that slightly simplify the forthcoming computations. The
velocity component u is expanded as

u(x, y, t) =
5∑
k=0

bk(x, t)f (k)(y/h),

so that, by definition of q, we have

q = h

(
1

3
b0 +

1

45
b1 +

1

6
b2 +

7

360
b3 +

1

840
b4 +

1

7560
b5

)
.

(65)

These new polynomials do not contribute to the evaluation
of τw which is therefore still given by τw = b0/h.

Sticking to the approach followed for the derivation
of the first order model, we keep q and τ as primitive
variables in addition to h. In particular τ remains defined
from τw = (3q/h2) + τ , which implies b0 = (3q/h) + hτ .
Inserting this in (65) we obtain b1 = −(15hτ + 15

2 b2 −
7
8b3 + 3

56b4 + 1
168b5), so that the expression of u extending

(55) to second order reads:

u =

(
3q

h
+hτ

)
f (0)−

(
15hτ+

15

2
b2+

7

8
b3+

3

56
b4+

1

168
b5

)
× f (1) +

5∑
k=2

bkf
(k), (66)

from which v = −
∫ y

0 ∂xu dy can be derived. To deal with
the seven unknowns h, q, τ , bk, k = 2, . . . , 5, assumed to
be slow functions of x and t, we need seven independent
equations. In addition to the kinematic condition at the
interface (9) and the average x-momentum equation (64)
derived earlier, we have the boundary condition (62) on
the tangential stress at y = h, here used for the first time.
To get the remaining four equations we follow the same
scheme as for the first-order model and look for collocation
at the boundaries.

The equation extending (56) at second order is ob-
tained by differentiating (59) with respect to y, which
yields:

∂tyu+ u∂xyu+ v∂y2u− ∂y3u− 2∂x2yu = 0, (67)

where we have used (60) differentiated with respect to x
and the continuity equation (3) to eliminate ∂xyp. Further
evaluating (67) at y = 0 gives us

∂t(∂yu
∣∣
0
)− ∂y3u

∣∣
0
− 2∂x2yu

∣∣
0

= 0. (68)

The evaluation of (67) at y = h leads to an independent
equation. The raw condition:

∂tyu
∣∣
h

+ u
∣∣
h
∂xyu

∣∣
h

+ v
∣∣
h
∂y2u

∣∣
h
− ∂y3u

∣∣
h
− 2∂x2yu

∣∣
h

= 0

can be simplified by noting that ∂tyu
∣∣
h

= ∂t
(
∂yu
∣∣
h

)
−

∂yyu
∣∣
h
∂th and ∂xyu

∣∣
h

= ∂x
(
∂yu

∣∣
h

)
− ∂yyu

∣∣
h
∂xh. It is

easily checked that the kinematic condition v
∣∣
h

= ∂th +

u
∣∣
h
∂xh at the interface leads to a canceling of terms in

∂yyu
∣∣
h
. Furthermore (62) shows that ∂yu

∣∣
h

is already of
second-order so that its x and t derivatives can be ne-
glected. Accordingly, equation (67) evaluated at y = h
simply reads

∂y3u
∣∣
h

+ 2∂x2yu
∣∣
h

= 0. (69)
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To obtain simple conditions involving more specifically the
variables associated to the high-degree polynomials f (k),
k = 4, 5, we will add conditions obtained in the same way
as (68) but with higher derivatives. The second derivative
of (59) brings no new condition on the coefficients of these
polynomials since d4f (4)/dζ4 and d4f (5)/dζ4 cancel when
evaluated at ζ = 0. Thus taking the third derivative of
(59), we obtain

∂t(∂y3u
∣∣
0
) + 2∂yu

∣∣
0
∂xy2u

∣∣
0
− ∂y5u

∣∣
0
− 2∂x2y3u

∣∣
0

= 0,

(70)

and next for the fourth derivative:

∂t(∂y4u
∣∣
0
) + 3∂yu

∣∣
0
∂xy3u

∣∣
0

+ 2∂y2u
∣∣
0
∂xy2u

∣∣
0

− 2∂xyu
∣∣
0
∂y3u

∣∣
0
− ∂y6u

∣∣
0
− 2∂x2y4u

∣∣
0

= 0. (71)

The model at second order is obtained by inserting the
ansatz (66) into equations (9,64,62,68–71). In the deriva-
tion of the first-order model, the time derivative of τ could
be neglected since it was of higher order. This allowed
us to eliminate it from the equations to get a system of
two equations for the two unknowns h and q. Here this
derivative is no longer negligible and τ is a genuine dy-
namical variable. By contrast, the additional fields are
second-order corrections so that their t- or x-derivatives,
of still higher order, can be dropped without damage. The
derivation, straightforward but (really) tedious, has been
performed using mathematica. Let us consider first the
equations accounting for the enslaving of b2, ..., b5 to h, q,
and τ , namely (62) and (69–71) taken in that order. We
obtain

b2

h
+
b4

30h
+

b5

210h
+

3q(∂xh)2

h2
−

3∂xh ∂xq

h

+
3q ∂xxh

2h
−∂xxq=0, (72)

−b3+
b4

3
+
b5

15
−

36q(∂xh)2

h
+12∂xh ∂xq+6q ∂xxh=0,

(73)

54q2 ∂xh

h6
−

18q ∂xq

h5
−
b4

h5
+15∂t

[ τ
h2

]
+

54q τ ∂xh

h4

−
6τ∂xq

h3
−

36q∂xτ

h3
= 0, (74)

9∂x

[
q2

h6

]
+
b4 − b5
h6

− 15∂t

[ τ
h3

]
−

234q τ ∂xh

h5

+ 9
19q ∂xτ − 6τ ∂xq

h4
= 0. (75)

As already mentioned, partial derivatives of the bk do not
enter these equations so that they can be obtained imme-
diately as functions of h, q, and τ . Indeed b4 is directly
extracted from (74), next b5 from (75), and finally b2 and

b3 from (72) and (73), respectively. In fact, the somehow
weird definitions of polynomials f (2) to f (5) were intended
to make this final evaluation simpler: instead of having the
bk given by the most general (4× 4) linear system, we get
them by elementary substitution owing to the fact that
specific coefficients in this linear system cancel automati-
cally when the corresponding combinations of derivatives
are evaluated at y = 0 or y = h.

To terminate the derivation of the second-order model,
it remains to substitute the expressions of the bk in the
dynamical equations for h, q and τ , that is to say the
kinematic condition at the interface (9), the average x-
momentum balance equation (64) that now reads

∂tq+∂x

[
6q2

5h
−

2

35
hqτ

]
=−

3q

h2
−τ+h+∂x

[
9∂xq

2
−

6q∂xh

h

]
−Bh∂xh+ Γh∂x3h, (76)

and the stress balance at y = 0:

−
15τ

h2
+ ∂t

[
3q

h2

]
+ ∂tτ − ∂xx

[
6q

h2

]
−

1

h3

[
15

2
b2 +

7

8
b3

+
3

56
b4 +

1

168
b5

]
= 0. (77)

At last we obtain

∂th = −∂xq, (78)

∂tq=h−
3q

h2
−τ+∂x

[
2

35
hτq−

6q2

5h
−

6q∂xh

h
+

9∂xq

2

]
−Bh∂xh+ Γh∂x3h, (79)

∂tτ =
7

h
−

21q

h4
−

42τ

h2
−

18q2∂xh

5h4
+

6q∂xq

5h3
+

2qτ∂xh

5h2

+
τ∂xq

15h
−

3q∂xτ

5h
+

84q(∂xh)2

h4
−

63∂xq∂xh

h3

−
7B∂xh

h
+

7Γ∂x3h

h
· (80)

A gradient expansion up to second order assuming q =
q(0) + q(1) + q(2) and τ = τ (1) + τ (2) leads to

q(2) =

(
7

3
h3 −

8

15
B h6 +

127

315
h9

)
(∂xh)2

+

(
h4 −

10

63
B h7 +

4

63
h10

)
∂x2h,

τ (2) =

(
2h−

4

15
B h4 +

13

63
h7

)
(∂xh)2

+

(
1

2
h2 −

8

105
B h5 +

2

63
h8

)
∂x2h,

yielding the exact second-order evolution equation [6] as
expected.

At this stage, one can notice that the second-order
formulation includes the effects of the stream-wise dissi-
pation, while they are absent from the first-order model,
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and more generally from any expansion based on the first-
order BL equations (44, 45). As a matter of fact, perform-
ing the same derivation at second order with this system,
one obtains

∂th = −∂xq, (81)

∂tq = h−
3q

h2
− τ + ∂x

[
2

35
hτq −

6q2

5h

]
−Bh∂xh+ Γh∂x3h, (82)

∂tτ =
7

h
−

21q

h4
−

42τ

h2
−

18q2∂xh

5h4
+

6q∂xq

5h3
+

2qτ∂xh

5h2

+
τ∂xq

15h
−

3q∂xτ

5h
−

7B∂xh

h
+

7Γ∂x3h

h
, (83)

where it can be seen that terms of the form ∂xx() or
∂x()∂x(), are absent. By difference with (78–80), such
terms have thus to be attributed to the effects of stream-
wise viscous dissipation.

6 Linear stability analysis

Before presenting our preliminary numerical results with
the model equations developed in Sections 4 and 5, let
us compare their linear stability properties with the data
collected by Liu et al. [33]. Setting w = wN + w̄ exp[i(kx−
ωt)] where w and wN refer to h and q and their values for
the reference Nusselt flow solution, linearizing (9, 58), we
obtain

ω h̄ = k q̄,

(
5

2
+ i

(
1

9
h4
N −

5

6
BhN

)
k −i

5

6
ΓhN k

3

)
h̄ =(

5

6
+ i

7

27
h4
N k − i

1

3
h2
N ω

)
q̄.

Compatibility of this system yields the dispersion rela-
tion. For easier comparison with experimental results, it
is preferable to turn to a scaling where hN is the length
scale. This leads to change k into k/hN , ω into ωhN , and
to introduce the Reynolds and Weber numbers, R = 1

3h
3
N

and W = Γ/h2
N respectively.

k + i

(
2

15
R−

1

3
B

)
k2 − i

1

3
Wk4 +

(
−1− i

14

15
Rk

)
ω

+ i
6

5
Rω2 = 0. (84)

Separating real and imaginary parts for real k and ω we
get

ω = k, (85)

6

5
R−B = Wk2. (86)

Equation (86) defines the neutral stability curve of the
modified Shkadov model in the plane (R, k) while (85)

implies that the phase speed c = ω/k is constant and equal
to unity at marginality. As expected, equations (85–86)
characterize the marginal waves of Benney’s equation (36)
[13] (For comparison, linear stability analysis of Shkadov’s
model (49–50) would lead to R−B = Wk2.).

Following Yih [34], let us consider the temporal stabil-
ity problem in terms of an asymptotic expansion of fre-
quency ω in powers of a real wave-number k in the limit
k� 1. We get

ω = k + i k2

(
2

5
R−

1

3
B

)
+ k3

(
22

45
BR −

44

75
R2

)
+ i k4

(
−

2

15
B2R+

28

27
BR2 −

1184

1125
R3 −

1

3
W

)
+O(k5),

(87)

to be compared with the exact asymptotic expansion of
Orr–Sommerfeld equation,

ω = k + i k2

(
2

5
R−

1

3
B

)
+ k3

(
−1 +

10

21
BR −

4

7
R2

)
+i k4

(
3

5
B −

471

224
R−

2

15
B2R+

17363

17325
BR2

−
75872

75075
R3 −

1

3
W

)
+O(k5). (88)

Although equation (87) is close to (88), three terms are
missing in (87). A careful examination of the calculus
shows that these terms mostly originate from second-order
viscous terms omitted in the derivation of (9–58).

A parallel stability analysis of the second-order model
(78–80) leads to the dispersion relation

A(k) + B(k)ω + C(k)ω2 + D(k)ω3 = 0, (89)

with

A(k) =k+i

(
1

5
R−

1

3
B

)
k2+

(
4

5
−

2

1225
R2+

1

105
BR

)
k3

+ i

(
2

175
R−

1

3
W

)
k4 +

1

315
Wk5,

B(k) = −1− i
38

35
Rk +

(
−

9

5
+

6

245
R2 −

1

35
BR

)
k2

− i
29

350
Rk3 −

3

105
WRk4,

C(k) = i
9

7
R−

3

35
R2k + i

9

70
Rk2,D(k) =

3

35
R2.

The asymptotic expansion of (89) in the temporal domain
(k ∈ R) gives

ω = k + i k2

(
2

5
R−

1

3
B

)
+ k3

(
−1 +

10

21
BR −

4

7
R2

)
+i k4

(
3

5
B −

376

175
R−

2

15
B2R+

3683

3675
BR2

−
1238

1225
R3 −

1

3
W

)
+O(k5), (90)
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Fig. 2. Neutral stability curve for glycerin-water films at
β = 5.6◦ and Γ = 700.15. The cut-off frequency is shown as
a function of the Reynolds number. The thick solid line is the
prediction of the second-order model, the thin one is a fit with
experimental data of Liu and Gollub [33] displayed as squares.
See text for dashed and dot-dashed lines that correspond to
the first-order and Shkadov’s model respectively.

which is now very close to (88). All terms are present
to the considered order in k and coefficients differ by no
more than 3% from the exact result. The remaining dis-
crepancy between (90) and the exact asymptotic result
can be attributed to the omission of the inertial terms
∂tv + u∂xv + v∂yv in the y-momentum equation (11) ow-
ing to the fact mentioned earlier that monomials of higher
degree involved in the velocity profile contribute very lit-
tle to the coefficients of the gradient expansion at third
order.

The neutral stability curve of (89), the spatial growth
rate −Im(k) and phase speed Re(ω/k) have been deter-
mined for a set of parameters corresponding to the ex-
periments of Liu et al. [33] using a standard predictor-
corrector Euler–Newton continuation scheme [35]. Fig-
ure 2 shows excellent agreement between our second-
order model (thick solid line) and the experimental
data (squares) for the cut-off frequency. Predictions from
Shkadov’s model and from our modified first-order model
(9–58) are also displayed as dot-dashed and dashed lines,
respectively. It is clear from the figure that the latter pre-
dicts the threshold correctly, while the former overesti-
mates it somehow. The increasing discrepancy between
the first-order and the second-order predictions must be
attributed to the neglect of stream-wise viscous dissipa-
tion. As a matter of fact, starting with the BL equations
(44–45) that also neglects this contribution, one is led to
(81–83) at second-order. A dispersion relation with the
same structure as (89) but with missing terms correspond-
ing to it can be derived (see note [36]), and it can be
checked that marginal properties are still given by (85–86),
which translates into the dashed line in Figure 2. A similar
improvement was obtained by Yu et al. [9] who developed

a linear stability analysis of BL equations at second-order
including both a heuristic term accounting for pressure
variation across the film and viscous stream-wise dissipa-
tion, even at large Reynolds number. The slight discrep-
ancy between experiments and our theory remains unex-
plained but we can remark that it is closely comparable
to that already reported in [33]. As a matter of fact, im-
proved agreement (light solid line in Fig. 2) can easily be
obtained by adjusting the value of the theoretical thresh-
old to that extrapolated from experimental data, which
can be done by changing the slope from β = 5.6◦ to 5.85◦,
or by adopting a slightly different set of physical constants
for the fluid mixture.

Spatial linear stability properties (ω ∈ R, k ∈ C) for
equations (84) and (89) with or without second-order vis-
cous terms, are compared with experimental results in
Figure 3. For the phase speed (Fig. 3b), predictions of
the various approximations are very close to each other
and discrepancies with experimental data (squares) are
not significant. By contrast, for the growth-rate (Fig. 3a)
the agreement is again excellent for the full second-order
model (solid line). With respect to predictions of the first-
order —dashed— and simplified second-order model (81–
83) —dot-dashed— it can be seen that the curves remain
close to each other. As a consequence of the degeneracy of
the marginal problem mentioned above, they intersect pre-
cisely at zero growth-rate and phase-speed equal to unity.
On the contrary, the full second-order model predicts a
significantly lower growth-rate so that the marginal condi-
tion is obtained for a smaller phase-speed, which explains
the discrepancy illustrated in Figure 2.

7 Spatial evolution of nonlinear periodic
waves

Comparison of fully nonlinear solutions to our second-
model (78–80) with experiments performed by Liu and
Gollub [4] has been attempted by numerical simulations
corresponding to a periodic upstream forcing. A second-
order finite-difference quasi-linearized Crank-Nicholson
scheme [37] has been implemented to deal with the
high-order nonlinearities involved. Owing to the convec-
tive character of the instability that sweeps disturbances
continuously away from the computational domain, the
boundary condition at the downstream end could be
treated in a non-physical way by truncating the discretized
equations at the relevant nodes. The scheme was seen to
be satisfactory in that inaccuracies remained confined to
a very small downstream numerical boundary layer and
never invaded the upstream region. The upstream bound-
ary condition was chosen as a periodically forced flow rate

q(0, t) = qN (1 +A cosωt)

to fit with Liu and Gollub’s flow-rate control via the en-
trance pressure manifold. The length of the wave inception
region depends on the forcing amplitude. The conversion
of the relevant physical quantity into a numerical param-
eter being out of reach, we have chosen to compare the
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Fig. 3. Dispersion of linear waves for glycerin-water films
with β = 4.6◦, R = 15.33 and Γ = 797.2 corresponding to
the experiments of Liu and Gollub (squares) and predictions of
various models. (a) Spatial growth rate. (b) Phase velocity. The
solid lines derive from the dispersion relation of the second-
order model. Dashed lines and dot-dashed lines corresponds to
the first-order model and the second-order model with stream-
wise second-order dissipation terms omitted.

waves at corresponding amplitude levels without trying to
adjust the distance to the origin of the flow, in other terms
the abscissa frame is given up to some unknown transla-
tion. We first present results corresponding to a multi-
peaked wave regime in Figure 4. The form and amplitude
of the numerical wave profiles are in striking agreement
with the experiment. In particular, the small depression
appearing on the primary peak, passing the primary front
and then locking its phase to form a subsidiary peak of the
wave-front is evident both in the simulation and in the ex-
periment. The modulation of the experimental wave-train

further downstream is also well captured by the simula-
tion. Figure 5 compares laboratory and computer results
for a low-frequency forcing ending in near-solitary sta-
tionary wave-trains. The comparison is again very good,
though our numerics predict amplitudes somewhat larger
than in the experiment. The capillary ripples downstream
the main hump are also slightly more pronounced and the
wavelength of the stationary train a little smaller. The
use of phase-sensitive averaging technique that might have
smoothed the steepest parts of the experimental wave pro-
files could partly explain the larger discrepancies observed
in Figure 5 when compared to Figure 4. Our results are
also in good agreement with direct numerical simulations
performed by Ramaswamy et al. (see Figs. 15 and 17 of
[19]) who also report larger amplitudes of the fronts.

We have also compared our numerical results to ex-
perimental ones of Alekseenko et al. [38]. Though their
geometry was cylindrical, the thickness-to-diameter ratio
was sufficiently large for curvature effects to be negligible.
Figure 6 displays the profile and streamlines of a station-
ary large-amplitude near-solitary wave for parameters in
Figures 5, 6, and Table 1 of [38]. Streamlines show evi-
dence of a large recirculation region inside the hump. Such
recirculations have been inferred from experimental wave
profiles by numerical reconstruction using the NS equa-
tions [41] and were already present in solutions to the BL
equations [21].

Alekseenko et al. measured the mean film thickness
〈h〉, the peak height hmax, the wavelength λ, the speed c
of the waves, and the mean surface velocity 〈U〉. Compar-
ison with our data is given in Table 1. Though the speed
and wavelength were provided with the experimental data,
the forcing frequency (the genuine control parameter) was
not given. The uncertainty about its value may partly ex-
plain the differences between experimental and numerical
values. At any rate, it is remarkable that the mean film
thickness 〈h〉 is much smaller than the Nusselt film thick-
ness hN = 0.582 mm for both the experiment and the sim-
ulation. The wave profile in Figure 6 is strikingly similar
to the sketches in [38]. By contrast, solutions of Shkadov’s
model by Tsvelodub and Trifonov [24] (cf. Fig. 15 of [24]a)
and of BL equations by Chang et al. [39,40] exhibit a large
number of capillary ripples in front of the main hump. This
feature can probably be attributed to the lack of disper-
sion associated to the second-order stream-wise viscous
dissipation terms omitted in BL equations.

8 Conclusion

From a theoretical point of view, the dynamics of film
flows down inclined planes can be studied at different
approximation levels, ranging from direct simulations of
the full NS equations to the simple KS equation. While
the latter gives an over-simplified picture of the problem,
appropriate for near-infinitesimal thickness modulations
of the flat film basic flow at the limit of strong inter-
facial effects, the former turn out to be untractable in
any realistic 3-dimensional situation, hence the need of
modeling at some intermediate level. Fortunately enough,
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Fig. 4. Comparison between experiments (left) and simulation (right). The plane is inclined to 6.4◦ from horizontal, liquid is
glycerin-water and Reynolds number R = 19.33 [4]. The figure shows three snapshots of the film thickness at three different
locations on the plane from upstream (top) to downstream (bottom) at forcing frequency 4.5 Hz. Units are identical in the
experiment and the simulation (here h0 ≡ hN ).
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Fig. 5. Comparison between experiment (left) and simulation (right) for low-frequency forcing at 1.5 Hz. Parameters are
identical to those in Figure 4.



C. Ruyer-Quil and P. Manneville: Modeling film flows down inclined planes 291

 0  5 10 15 20 25 30 35
  0

0.5

  1

1.5

  2
h

 /
 h

N

Fig. 6. Simulation of a periodically forced vertical film at
f = 2.034 Hz, ν = 7.2 10−6 m2/s and γ/ρ = 57.6 10−6 m3/s2

(i.e. R = 12.4 and Γ = 193.6) corresponding to the data
of Alekseenko, et al. [38] and leading to the formation of a
near-solitary stationary wave-train. Streamlines are plotted in
a reference frame moving at the speed of the wave. Notice the
large recirculation region in the hump. Wave characteristics are
listed in Table 1.

at sufficiently low Reynolds numbers instabilities develop
at long wavelengths, which legitimates approaches resting
on truncated gradient expansions. The resulting simpli-
fication of NS equations yields so-called boundary layer
equations that are slightly simpler to solve but remain
partial differential equations of maximal space dimension
(3 or 2 according to whether one considers transverse per-
turbations or not). They remain valid up to a point where
the assumption about the thickness modulations become
untenable, which depends on the strength of interfacial ef-
fects but is usually believed to happen above R ∼ 300 [1].
The next reduction step is taken by eliminating irrelevant
velocity degrees of freedom. Complete elimination of the
velocity field ends in Benney-like equations only involv-
ing the local film thickness h and its gradients. They are
asymptotically valid but, unfortunately, the lowest signif-
icant truncation, namely the Benney equation itself, al-
ready displays finite time singularities beyond some crit-
ical (and rather low) Reynolds number where one-hump
solitary solutions disappear [13]. Less drastic approxima-
tions have to keep some trace of flow variables in addi-
tion to h. Within the truncated gradient expansion, the
velocity field is then projected on a (small) set of func-
tions. Equations governing the corresponding amplitudes
are searched for by weighted residual methods, with the
goal of obtaining realistic evolutions free of non-physical
singularities. Such models should have thus essentially the
same range of validity as BL equations but now no longer
involve fields depending on the cross-flow coordinate y
but amplitudes that depend only on the stream-wise x
and transverse z coordinates, i.e., one space-dimension

less, which makes them much easier to analyze or simu-
late. The simplest such model due to Shkadov [22] just

involves h and the local flow rate q =
∫ h

0
u(y) dy and

is obtained by assuming a parabolic flow profile and av-
eraging the BL equations at lowest order over the film
thickness. Though it yields qualitatively good results in
the nonlinear regime, it fails to predict the critical be-
havior quantitatively. In order to overcome its limitations
we have developed a more sophisticated approach that
also rests on averaged equations but deals with a more
flexible velocity profile based on the polynomials appear-
ing in Benney’s expansion. Among various weighted resid-
ual strategies, we have chosen a method of collocation at
boundaries. The resulting additional conditions are identi-
ties that have to be fulfilled by the solutions, which deter-
mine relations between unknown coefficients in the expan-
sion of the velocity field, further understood as successive
terms (obtained by identification) of a Taylor series ap-
proximation to this field. We have developed several other
variants of the method of weighted residuals, obtaining
models with similar structure. The interest of the present
strategy lies in the fact that the gradient expansion of the
model matches exact results asymptotically. Linear sta-
bility analysis has shown that second-order modeling cor-
rectly predicts the threshold, the spatial phase-speed and
growth-rate beyond criticality in the range of parameters
corresponding to laboratory experiments. Subsequent nu-
merical simulation of the spatial evolution of forced films
did not show finite-time blow-up often encountered with
Benney-like equations for which all variables except the
film-thickness h are adiabatically eliminated. Good quan-
titative agreement with both numerical and experimental
results was obtained even for large amplitude waves with-
out adjustable parameters. Proper account of the stream-
wise viscous dissipation was seen to be crucial for the im-
provement of the theoretical predictions.

In the spirit of dynamical systems theory, a study of
the families of stationary wave solutions to the first and
second-order models has been undertaken, also showing
good agreement with the direct numerical simulations of
Salamon et al. [18]. In particular, we were able to recover
their bifurcation diagram showing a cusp catastrophe at
a quantitative level (see [42] for a preliminary report).

All these results thus strongly encourage us not only to
perform a detailed investigation in the parameters space
R, B and Γ in the case of two-dimensional film-flow but to
turn bravely to the three-dimensional case. The strategy
has been to describe the structure of the flow in terms
of a small number of fields with clear physical signifi-
cance, the film thickness h, the instantaneous flow rate
q and the variable τ measuring the departure of the wall
shear stress from the parabolic profile prediction. These
quantities serve to reconstruct the full flow field. This ap-
proach, which comes to replace the dependence on the
normal coordinate y by a small set of variables, can be
extended straightforwardly to three dimensions. The cor-
responding reduction will lead to few partial differential
evolution equations in x and z. Besides being much less
demanding of numerical resources for their simulation,
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Table 1. Wave characteristics corresponding to Figure 6.
Top line: Experimental observations. Bottom line: Numerical
results.

〈h〉 hmax λ c c 〈U〉
mm mm mm mm/s qN/〈h〉 qN/〈h〉

0.545 1.12 36 460 2.83 1.27
0.514 1.13 34 434 3.20 1.30

the study of these equations should give clearer insight in
the physical mechanisms at the origin of secondary three-
dimensional instabilities observed in experiments [3].

The modeling of film flows over inclined planes thus of-
fers to us a unique opportunity of understanding the tran-
sition to turbulence via spatio-temporal chaos in open-
flow configurations, hinting at other hydrodynamic prob-
lems such as boundary-layer stability.
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